[теллина верси][теллина верси]
Чулацам дӀабаьккхина Чулацам тӀетоьхна
Umarbot (дийцар | къинхьегам)
ж АгӀо кхоллар
Юхадаьккхина декъашхочун Umarbot (дийц.) нисдар 1127137
МогӀа 1:
[[Файл:Pleiades large.jpg|thumb|250px|Плеяды — [[рассеянное скопление]] в созвездии [[Телец (созвездие)|Тельца]]]]
{{НБМ-Росси
'''Седа''' — серло луш йолу йоккха а, еза а газан шар [[Малх]] санна<ref>{{cite web|url=http://www.astronet.ru/db/msg/1162211|title=Звезда|author=Засов А. В.|publisher=[[Астронет]]|accessdate=2013-04-04|archiveurl=http://www.webcitation.org/6FehrzMWN|archivedate=2013-04-05}}</ref>.
|статус = эвла
|нохчийн цӀе = Седа
|шен цӀе = {{lang-ru|Седа}}
|герб =
|байракх =
|пачхьалкх = Росси
|lat_deg = |lat_min =|lat_sec =
|lon_deg =|lon_min =|lon_sec =
|CoordAddon =
|CoordScale =
|пачхьалкхан картан барам =
|регионан картан барам =
|кӀоштан картан барам =
|регион = Пермийн мехкайист
|регион таблицехь = Пермийн мехкайист
|кӀоштан тайпа = Муниципальни кӀошт
|кӀошт = Кишертан кӀошт
|кӀошт таблицехь = Кишертан кӀошт{{!}}Кишертан кӀошт
|юьртан меттиган тайпа = Юьртан меттиг
|юьртан меттиг =
|юьртан меттиг таблицехь =
|юкъара екъаялар =
|коьртан тайпа =
|корта =
|йиллина терахь =
|дуьххьара хьахор =
|хьалхара цӀерш =
|статус елла терахь =
|майда =
|хӀордан тӀегӀанал локхалла =
|бахархой = 213
|бахархой ларар шо = 2010
|луьсталла =
|агломераци =
|къаьмнийн хӀоттам =
|динан хӀоттам =
|бахархойн цӀерш =
|поштан индекс = 617600
|поштан индексаш =
|сахьтан аса = +5
|автомобилан код = 59
|телефонан код =
|идентификаторан терахьаш =
|категори Commons чохь =
|сайт =
}}
 
<!--
'''Седа''' ({{lang-ru|Седа}}) — [[Росси|Российн Федерацин]] [[Пермийн мехкайист]]ан [[Кишертан кӀошт]]ан юкъа йогӀу эвла.
[[Малх]] — типичная звезда [[Спектральный класс|спектрального класса]] G. Образуются из газово-пылевой среды (главным образом из [[водород]]а и [[Гелий|гелия]]) в результате [[гравитация|гравитационного]] сжатия. Температура вещества в недрах звёзд измеряется миллионами [[кельвин]]ов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате [[термоядерная реакция|термоядерных реакций]] превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами [[Вселенная|Вселенной]], поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную [[теплоёмкость]].
== Бахархойн дукхалла ==
 
{| class='standard' style='text-align: center;' width=60%
Ближайшей к Солнцу звездой является [[Проксима Центавра]]. Она расположена {{nobr|в 4,2 [[Световой год|светового года]]}} от центра [[Солнечная система|Солнечной системы]] ({{nobr|4,2 св. лет}} = {{nobr|39 Пм}} = {{nobr|39 триллионов км}} = {{nobr|3,9{{e|13}} км}}). ''См. также'' [[Список ближайших звёзд]].
| colspan=2 | Бахархойн дукхаллин хийцам
 
|- class='shadow'
[[Невооружённый глаз|Невооружённым взглядом]] (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в [[Местная группа|местной группе]] галактик.
|[[2002 шо|2002]]<ref>[http://std.gmcrosstata.ru/webapi/jsf/guestUserGuide.jsp?tableViewTabForm:_idcl=tableViewTabForm:j_id_jsp_1807425244_41&tableViewTabForm_SUBMIT=1&javax.faces.ViewState=8df2zF%2F30JdRqQUnDyAJB7uPztaProtW9GCDP9riU6vi7I1f5N3Sg5oSn1ZJrQxqsEBHHPL%2BMR9QP9w%2FObfO8XHjGC2iBZu03Ab8VvwoRa7M%2BIlhhvePIinZy34ZldQ3qNO%2FBA%3D%3D# 2002 2010 шш. лараран микрохаамаш.]</ref>
[[Файл:Starsinthesky.jpg|thumb|250px|Область формирующихся звёзд в [[Большое Магелланово Облако|Большом Магеллановом Облаке]]]]
|[[2010 шо|2010]]<ref>[http://std.gmcrosstata.ru/webapi/jsf/guestUserGuide.jsp?tableViewTabForm:_idcl=tableViewTabForm:j_id_jsp_1807425244_41&tableViewTabForm_SUBMIT=1&javax.faces.ViewState=8df2zF%2F30JdRqQUnDyAJB7uPztaProtW9GCDP9riU6vi7I1f5N3Sg5oSn1ZJrQxqsEBHHPL%2BMR9QP9w%2FObfO8XHjGC2iBZu03Ab8VvwoRa7M%2BIlhhvePIinZy34ZldQ3qNO%2FBA%3D%3D# 2002 2010 шш. лараран микрохаамаш.]</ref>
 
== Единицы измерения ==
Большинство звёздных характеристик как правило выражается в [[СИ]], но также используется и [[СГС]] (например, [[светимость]] выражается в [[эрг]]ах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:
 
{|
|[[солнечная масса]]:
|<math>M_\bigodot = 1.9891 \times 10^{30}</math> [[килограмм|кг]]
|-
|[[солнечная светимость]]:
|<math>L_\bigodot = 3.827 \times 10^{26}</math> [[Ватт|Вт]]
|-
|[[солнечный радиус]]:
|340
|<math>R_\bigodot = 6.960 \times 10^{8}</math> [[метр|м]]
|213
|}
 
Для обозначения расстояния до звёзд приняты такие единицы как [[световой год]] и [[парсек]]
== Климат ==
Кхузахь климат барамехь континентан ю, аьхка йовха хуьлу, ткъа Ӏа барамехь-шийла хуьлу. Шаран уггаре а бовха бутт бу — июль (мангалан), уггаре а шийла — январь (кхолламан).
 
Большие расстояния, такие как радиус гигантских звёзд или [[большая полуось]] двойных звёздных систем часто выражаются с использованием [[астрономическая единица|астрономической единицы]] ({{nobr|а. е.}}) — среднее расстояние между Землёй и Солнцем ({{nobr|150 млн км}}).
== Cахьтан аса ==
 
[[Файл:Map of Russia - Yekaterinburg time zone.svg|left|100px]]
== Виды звезд ==
Кхузахь сахьт Екатеринбургца нийса лелаш ду. Сахьтан аса ю UTC+5.
[[Файл:HR-diag-no-text-4.svg|thumb|350px| [[Диаграмма Герцшпрунга-Рассела]]]]
 
Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.
 
В начале XX века, [[Эйнар Герцшпрунг|Герцшпрунг]] и [[Генри Рассел|Рассел]] нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс» различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название ''Диаграмма Герцшпрунга-Рассела'') оказалось ключом к пониманию и исследованиям процессов, происходящих внутри звезды.
 
Теперь, когда есть теория внутреннего строения звезд и теория их эволюции, стало возможным и объяснение существования классов звезд. Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.
 
В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идет буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идет класс светимости (номер области на диаграмме Герцшпрунга-Рассела), а затем идет дополнительная информация. К примеру, Солнце имеет класс G2V.
 
=== Звёзды главной последовательности ===
{{also|Главная последовательность}}
 
Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность — это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакций. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).
 
Современная (гарвардская) спектральная классификация звёзд, разработана в [[Гарвардский университет|Гарвардской]] обсерватории в [[1890]] — [[1924 год]]ах.
 
{|class="standard sortable" style="text-align: center;"
|+ Основная (гарвардская) спектральная классификация звёзд
! style="width: 5px;" | Класс
! style="width: 100px;" | Температура, <br />K
! style="width: 40px;" abbr="color" | Истинный цвет
! style="width: 40px;" abbr="color" | Видимый цвет<ref name="möre">The Guinness book of astronomy facts & feats, Patrick Moore, 1992, 0-900424-76-1</ref><ref>{{cite web
| date = December 21 2004
| url = http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html
| title = The Colour of Stars
| publisher = Australia Telescope Outreach and Education
| accessdate = 2007-09-26
| archiveurl = http://www.webcitation.org/61BISbtHe
| archivedate = 2011-08-24
}} — Explains the reason for the difference in color perception.</ref>
 
! abbr="color" | Основные признаки <ref>Звёзды под редакцией [[Сурдин, Владимир Георгиевич|В.Г. Сурдина]]</ref>
|- style="background: #9bb0ff;"
! style="background: #9bb0ff;" | [[#Класс O|O]]
| 30 000—60 000
| style="background: #9aafff;" | голубой
| style="background: #aabfff;" | голубой
| Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
|- style="background: #aabfff;"
! style="background: #abbfff;" | [[#Класс B|B]]
| 10 000—30 000
| style="background: #cad7ff;" | бело-голубой
| style="background: #cad7ff;" | бело-голубой и белый
| Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
|- style="background: #cad7ff;"
! style="background: #cad7ff;" | [[#Класс A|A]]
| 7500—10 000
| style="background: #f8f7ff;" | белый
| style="background: #f8f7ff;" | белый
| Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
|- style="background: #f8f7ff;"
! style="background: #f8f7ff;" | [[#Класс F|F]]
| 6000—7500
| style="background: #fff4ea;" | жёлто-белый
| style="background: #f8f7ff;" | белый
| Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
|- style="background: #fff4ea;"
! style="background: #fff4ea;" | [[#Класс G|G]]
| 5000—6000
| style="background: #fff2a1;" | жёлтый
| style="background: #fff2a1;" | жёлтый
| Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
|- style="background: #ffd2a1;"
! style="background: #ffd2a1;" | [[#Класс K|K]]
| 3500—5000
| style="background: #ffc46f;" | оранжевый
| style="background: #ffe46f;" | желтовато-оранжевый
| Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
|- style="background: #ffcc6f;"
! style="background: #ffcc6f;" | [[#Класс M|M]]
| 2000—3500
| style="background: #ff6060;" | красный
| style="background: #ffa040;" | оранжево-красный
| Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.
 
|}
 
=== Коричневые карлики ===
{{main|Коричневый карлик}}
 
Коричневые карлики — это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y(в 2011 году его существование подтвердилось открытием нескольких звезд с температурой 300—500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3).
 
=== Белые карлики ===
{{main|Белый карлик}}
 
Вскоре после [[Гелиевая вспышка|гелиевой вспышки]] «загораются» [[углерод]] и [[кислород]]; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по [[Диаграмма Герцшпрунга — Рассела|диаграмме Герцшпрунга — Рассела]]. Размер [[Звёздная атмосфера|атмосферы]] звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков [[Солнечный ветер|звёздного ветра]]. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как [[белый карлик]] (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает [[предел Чандрасекара]] — как [[нейтронная звезда]] ([[пульсар]]), если же масса превышает [[предел Оппенгеймера — Волкова]] — как [[чёрная дыра]]. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками [[Сверхновая|сверхновых]].
 
Подавляющее большинство звёзд, и [[Солнце]] в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление [[Вырожденный газ|вырожденных]] [[электрон]]ов не уравновесит [[Гравитация|гравитацию]]. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности [[вода|воды]], звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.
 
=== Красные гиганты ===
{{main|Красный гигант}}
Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000 — 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3<sup>m</sup>—0<sup>m</sup>(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.
 
=== Переменные звёзды ===
{{main|Переменная звезда}}
 
Переменная звезда — это звезда, у которой за всю историю наблюдения хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать; также блеск может измениться если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звёзд принято следующее деление<ref>[ftp://cdsarc.u-strasbg.fr/pub/cats/B/gcvs/vartype.txt GCVS Variability Types and Distribution Statistics of Designated Variable Stars According to their Types of Variability]</ref>:
# '''Эруптивные переменные звёзды''' — это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
# '''Пульсирующие переменные звёзды''' — это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
# '''Вращающиеся переменные звёзды''' — это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
# '''[[Катаклизмические переменные|Катаклизмические (взрывные и новоподобные) переменные звёзды]]'''. Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
# '''Затменно-двойные системы'''
# '''Оптические переменные двойные системы с жёстким рентгеновским излучением'''
# '''Новые типы переменных''' — типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже ''изданные'' классы.
 
=== Типа Вольфа — Райе ===
{{main| Звезда Вольфа — Райе}}
Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая [[температура]] и [[светимость]]; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в [[спектр]]е широких полос излучения [[водород]]а, [[гелий|гелия]], а также [[кислород]]а, [[углерод]]а, [[азот]]а в разных [[степень ионизации|степенях ионизации]] (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 [[Ангстрем|Å]], а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W<ref>[http://arxiv.org/abs/astro-ph/0610356 [astro-ph/0610356&#93; Physical Properties of Wolf-Rayet Stars]</ref>. Однако подклассы строятся совсем не как у звёзд главной последовательности:
# WN — подкласс Вольфа-Райе звезд в спектрах которых есть линии NIII — V и HeI-II.
# WO — в их спектрах сильны линии кислорода. Особенно ярки линии OVI λ3811 — 3834
# WC — звёзды, богатые углеродом.
Окончательной ясности происхождения звезд типа Вольфа — Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звезд, сбросившие значительную часть массы на каком-то этапе своей эволюции<ref>[http://www.astronet.ru/db/msg/1190776 Астронет > Вольфа-Райе звёзды]</ref>.
 
=== Типа T Тельца ===
{{main| Звезда типа T Тельца}}
[[Файл:TTauriStarDrawing.jpg|thumb|right|Звезда типа T Тельца с околозвёздным диском]]
'''Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS)''' — класс [[Переменная звезда#Неправильные переменные, связанные с диффузными туманностями, и быстрые неправильные|переменных звёзд]], названный по имени своего прототипа [[Т Тельца]]. Обычно их можно обнаружить рядом с [[Молекулярное облако|молекулярными облаками]] и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и [[Хромосфера|хромосферной]] активности.
 
Они принадлежат к звёздам [[Спектральный класс|спектральных классов]] F, G, K, M и имеют массу меньше двух [[Солнечная масса|солнечных]]. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд [[Главная последовательность|главной последовательности]] той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие<ref>T Tauri Stars, Immo Appenzeller and Reinhard Mundt, 1989, Aston.Astrophys.Rev. 1, 291</ref>.
 
В [[спектр]]е звёзд типа T Тельца присутствует [[литий]], который отсутствует в спектрах [[Солнце|Солнца]] и других звёзд [[Главная последовательность|главной последовательности]], так как он разрушается при температуре выше 2,500,000 K<ref>[http://arxiv.org/abs/astro-ph/0309284 An empirical criterion to classify T Tauri stars and substellar analogs using low-resolution optical spectroscopy] David Barrado y Navascues, 2003</ref>.
 
=== Новые ===
{{main| Новая звезда}}
Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9<sup>m</sup>): за несколько дней до максимума звезда лишь на 2<sup>m</sup> слабее. Количество таких дней определяет, к какому классу новых относится звезда<ref>[http://arxiv.org/pdf/astro-ph/0412333v1 Classical nova explosions]</ref>:
# Очень быстрые, если это время (обозначаемое как t<sub>2</sub>) меньше 10 дней.
# Быстрые — 11<t<sub>2</sub><25 дней
# Очень медленные: 151<t<sub>2</sub><250 дней
# Предельно медленные, находящие вблизи максимума годами.
Существует зависимость максимума блеска новой от t<sub>2</sub>. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом болометрическая светимость во время вспышки довольно долго остается неизменной.
 
В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.
 
=== Сверхновые ===
{{main| Сверхновая звезда}}
 
Сверхно́вые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет — то I типа
 
=== Гиперновые ===
{{main| Гиперновая звезда}}
 
Гиперновая — коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 10<sup>46</sup> джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой более 100 масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.
 
=== LBV ===
{{main| Яркие голубые переменные}}
 
Яркие голубые переменные (ЯГП), также известные как переменные типа S Золотой Рыбы (SDOR), — это очень яркие голубые пульсирующие гипергиганты, названные по звезде S Золотой Рыбы (S Dor) в БМО. Они показывают неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m. Обычно самые яркие голубые звёзды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены расширяющимися оболочками. Встречаются исключительно редко.
 
Яркие голубые переменные могут сиять в миллион раз сильнее, чем Солнце и их масса может быть 150 солнечных, подходя к теоретическому пределу на массу звезды, что делает их самыми яркими, горячими и мощными звёздами во Вселенной. Звёзды этого типа всегда находятся в состоянии неустойчивого гидростатического равновесия, поскольку с их поверхности постоянно истекает мощнейший звёздный ветер, который всё время снижает их массу. По этой причине они всегда окружены туманностями (см. [[Эта Киля]] которая является наиболее близкой и наиболее изученной ЯГП). Из-за их огромной массы время жизни таких звёзд очень мало: всего несколько миллионов лет.
 
Современные теории считают, что ЯГП это только стадия эволюции очень массивных звёзд, которая позволяет им сбросить часть массы. Они могут эволюционировать в звёзду Вольфа — Райе, перед тем как взорваться как сверхновая или даже как гиперновая, если они не потеряют достаточно массы.
 
=== ULX ===
{{main| Ультраяркие рентгеновские источники}}
'''Ультраяркие рентгеновские источники''' (ULXs) — [[небесное тело]] с сильным излучением в [[Рентгеновское излучение|рентгеновском диапазоне]] (10<sup>39</sup> — 10<sup>42</sup> эрг с<sup>−1</sup> в диапозоне 0,5 −100 кэВ), квазипериодическим на масштабе порядка 20 с, шкала переменности от нескольких секунд до нескольких лет. Если предположить, что излучение изотропно, то для согласования с [[Эдингтоновская светимость|эдингтоновской светимостью]], необходимо, чтобы масса гравитирующего тела была 10000M<sub>ʘ</sub><ref>[http://ufn.ru/ru/articles/2006/3/j/ Ультраяркие рентгеновские источники в галактиках — микроквазары или черные дыры промежуточных масс>]</ref><ref>[http://adsabs.harvard.edu/abs/2005ChJAS...5..139K Multiwavelength Observations of Ultraluminous X-Ray Sources]</ref>. О природе явления ведутся споры. Большинство моделей полагает, что в качестве источника излучения служит [[черная дыра]], а вот о механизме высвечивания энергии единого мнения нет.
 
=== Нейтронные звёзды ===
{{main| Нейтронная звезда}}
На поздних стадия эволюции у звёзд с массой 8-10 [[солнечная масса|M<sub>ʘ</sub>]] давление вырождённых электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в [[нейтрон]]ы. Масса таких звезд начинается от предела Чандрасекара (1.44 M<sub>ʘ</sub>) и до [[Предел Оппенгеймера — Волкова|предела Оппенгеймера — Волкова]] при диаметре порядка 10 км.
 
Ещё одной особенностью нейтронных звезд является сильное магнитное поле. Благодаря ему и быстрому вращению, приобретённому звездой из-за несферического коллапса или как результат сохранения вращательного момента при сильном сжатии, на небе наблюдаются [[Радиопульсар|радио-]] и [[Рентгеновский пульсар|рентгеновские пульсары]].
 
=== Уникальные звезды ===
 
{{main| SS 433}}
 
''[[SS 433]]'' (известный также как ''V 1343 Орла'' и ''1908+05''), или ''объект Стефенсона-Сандьюлика'' — двойная затменная звёздная система 14-й [[звёздная величина|звёздной величины]], включающая в себя два компонента. Один из них представляет собой массивную звезду высокой температуры (около 30 тыс. [[кельвин]]ов) и светимости, а другой — компактную звезду ([[нейтронная звезда|нейтронную звезду]] или [[чёрная дыра|чёрную дыру]]). С главной звезды на спутник непрерывно перетекает струя газа, так как гигант не может сохранить свою целостность в поле тяготения своего очень компактного соседа. Вокруг компактной звезды формируется [[аккреционный диск]] из перетекающего на неё вещества, который затмевает главную звезду раз в 13 суток. Спутник окружён облаком плазмы, имеющим очень высокую температуру и светимость. Эти процессы порождают мощное [[рентгеновское излучение]].
 
Других звёздных систем, подобных SS 433, астрономами в нашей Галактике пока не найдено.
 
== Звездные системы ==
Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд то принято её называть [[звёздное скопление|звёздным скоплением]].
[[двойная звезда|Двойные]] ([[Кратная звезда|кратные]]) звёзды очень распространены. По некоторым оценкам, более 70 % звёзд в галактике кратные<ref>[http://www.astronet.ru/db/msg/1188258 Астронет &gt; Двойные звёзды (физические двойные)]</ref>. Так, среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных (в том числе и самая яркая из визуально наблюдаемых звёзд — [[Сириус]]). В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины — двойные звёзды всех типов<ref>[http://www.astronet.ru/db/msg/1171338 Астронет — Двойные звёзды и значение их наблюдений в астрономии]</ref>.
 
=== Двойные звёзды ===
{{main| Двойная звезда}}
 
Двойная звезда, или двойная система — две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. А не зная зависимости масса — радиус, масса — светимость и масса — спектральный класс, практически ничего невозможно сказать ни о внутреннем строении звёзд, ни об их эволюции.
 
Но двойные звёзды не изучались бы столь серьёзно, если бы все их значение сводилось к информации о массе. Несмотря на многократные попытки поиска одиночных чёрных дыр, все кандидаты в черные дыры находятся в двойных системах. Звёзды Вольфа — Райе были изучены именно благодаря двойным звёздам.
 
=== Тесные двойные звёзды (ТДС) ===
Среди двойных звезд выделяют так называемые тесные двойные системы (ТДС): двойные системы, в которых происходит обмен веществом между звёздами. Расстояние между звёздами в тесной двойной системе сравнимо с размерами самих звёзд, поэтому в таких системах возникают более сложные эффекты, чем просто притяжение: [[Приливные силы|приливное]] искажение формы, прогрев излучением более яркого компаньона и другие эффекты.
 
=== Звездные скопления ===
Звёздное скопление — группа звёзд, имеющих общее происхождение, положение в пространстве и направление движения. Члены таких групп связаны между собой взаимным тяготением. Большинство из известных скоплений находится в [[Млечный Путь|нашей Галактике]].
 
Открытие звёздных скоплений принадлежит английскому астроному [[Уильям Гершель|Уильяму Гершелю]]. Всего им было описано около 2 тыс. скоплений. До наблюдений Гершеля считалось, что звёзды однородно распределены по всей Вселенной. Так было и во времена [[Исаак Ньютон|Исаака Нютона]]. Но Гершель смог опровергнуть это мнение, доказав, что распределение звёзд в пространстве очень неравномерно. Многие из них собраны в тесные группы; Гершель дал таким группам название «звёздные кучи», а затем они были переименованы в «звёздные скопления». Несколько позже, в XIX веке, скопления были разделены учёными на два класса (а позднее к ним добавился ещё один).
 
Известно три класса звёздных скоплений: шаровые, рассеянные и ассоциации. Классы различаются между собой по внешнему виду, количеству звёзд и по расстояниям между компонентами скопления. Кроме того, существуют различия по химическому составу, возрасту, типам звёзд, входящих в группу, а также по расположению скоплений в Галактике.
 
==== Шаровые ====
 
Шаровое скопление — скопление звёзд, имеющее сферическую или слегка сплюснутую форму. Их диаметр колеблется от 20 до 100 [[парсек]]. Это одни из старейших объектов во Вселенной. Типичный возраст шаровых скоплений — более 10 млрд лет. Поэтому в их состав входят маломассивные старые звёзды, большинство из которых находится на завершающих стадиях своей эволюции. Как следствие, здесь много [[нейтронная звезда|нейтронных звёзд]], [[цефеиды|цефеид]] и [[белые карлики|белых карликов]]; предполагается также наличие [[чёрная дыра|чёрных дыр]]. Нередко в скоплениях происходят вспышки [[новая звезда|новых звёзд]].
 
Шаровые скопления отличаются высокой концентрацией звезд. К примеру, в кубическом парсеке в центре такого скопления находится от нескольких сот до десятков тысяч звёзд. Для сравнения: в окрестностях Солнца на объём более одного кубического парсека приходится только одна звезда.
 
Шаровые скопления возникли из гигантского догалактического облака, из которого впоследствии сфомировалась Галактика. В [[Млечный Путь|Млечном Пути]] насчитывают более 150 шаровых скоплений, большинство из которых концентрируются к центру галактики.
 
==== Рассеянные ====
 
Рассеянное скопление — второй класс звёздных скоплений. Это звёздная система, компоненты которой располагаются на достаточно большом расстоянии друг от друга. Этим она отличается от шаровых скоплений, где концентрация звёзд сравнительно велика. По этой причине рассеянные скопления очень трудно обнаруживать и изучать. Если звёзды, находящиеся от наблюдателя на одинаковом расстоянии, движутся в одном и том же направлении, есть основания предполагать, что они входят в рассеянное скопление.
 
Наиболее известные представители этого класса скоплений — [[Плеяды (звёздное скопление)|Плеяды]] и [[Гиады (звёздное скопление)|Гиады]], находящиеся в [[Телец (созвездие)|созвездии Тельца]].
 
Рассеянные скопления довольно многочисленны. Их известно больше, чем шаровых. Некоторые из них находятся на близком расстоянии от Солнца — например, до скопления Гиады около 40 [[парсек]].
 
Рассеянные скопления обычно состоят из нескольких сот или тысяч звёзд, хотя встречаются и более многочисленные группы. По большей части сюда входят массивные и яркие звёзды, а также [[переменная звезда|переменные]]. Рассеянные скопления имеют небольшую массу. Их гравитационное поле не способно удерживать компоненты длительное время и те постепенно отдаляются друг от друга.
 
==== Ассоциации ====
 
Звёздные ассоциации — разреженное скопление молодых звёзд высокой светимости, отличающееся от других типов скоплений своим размером (около 200—300 световых лет). Ассоциации, как правило, связаны с облаками молекулярного газа, имеющего сравнительно низкую температуру. Этот газ является «строительным материалом» для звёзд. Образовавшиеся массивные звёзды нагревают окружающий их молекулярный газ, который со временем рассеивается в межзвёздной среде. Ассоциации, также как и рассеянные скопления, неустойчивы. Они медленно расширяются и их компоненты отдаляются друг от друга.
 
=== Галактики ===
{{main|Галактика}}
 
Галактика — это крупное скопление звёзд (чаще всего 10—50 [[Килопарсек|Кпс]] в диаметре), межзвездного газа и пыли, [[Тёмная материя|тёмной материи]].
 
== Основные характеристики и процессы ==
[[Файл:Star-sizes ru.jpg|500px|thumb|right|Соотношение размеров [[планета|планет]] [[Солнечная система|Солнечной системы]] и некоторых хорошо известных звёзд, включая [[VY Большого Пса]]:
<ol>
<li>[[Меркурий (планета)|Меркурий]] < [[Марс (планета)|Марс]] < [[Венера (планета)|Венера]] < [[Земля]];</li>
<li>Земля < [[Нептун (планета)|Нептун]] < [[Уран (планета)|Уран]] < [[Сатурн (планета)|Сатурн]] < [[Юпитер (планета)|Юпитер]];</li>
<li>Юпитер < [[Вольф 359]] < [[Солнце]] < [[Сириус]];</li>
<li>Сириус < [[Поллукс (звезда)|Поллукс]] < [[Арктур]] < [[Альдебаран]];</li>
<li>Альдебаран < [[Ригель (звезда)|Ригель]] < [[Антарес]] < [[Бетельгейзе]];</li>
<li>Бетельгейзе < [[Мю Цефея|μ Цефея]] < [[VV Цефея#VV Цефея A|VV Цефея A]] < [[VY Большого Пса]].</li>
</ol>]]
У звезды два параметра, определяющие все внутренние процессы — масса и химический состав. Если их задать для одиночной звезды, то на любой момент времени можно предсказать все остальные физические характеристики звезды, такие как блеск, спектр, размер, внутренняя структура.
 
=== Расстояние ===
Существует множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения [[параллакс]]ов звёзд. Первым измерил расстояние до звезды [[Вега|Веги]] российский астроном [[Василий Яковлевич Струве]] в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 [[парсек]], а со специальных астрометрических спутников, таких как [[Hipparcos]], — до 1000 пк.
 
Если звезда входит в состав звёздного скопления, то мы не сильно ошибёмся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу [[цефеида|цефеид]], то расстояние можно найти из зависимости период пульсации — абсолютная звёздная величина.
 
В основном, для определения расстояния до далёких звёзд используется [[фотометрия]]<ref>[http://www.vokrugsveta.ru/vs/?article_id=6157 Вокруг Света | Журнал | Лестница в бесконечность]</ref><ref>[http://www.astronet.ru/db/msg/1188617 Астронет &gt; Расстояния до космических объектов (методы определения)]</ref>.
 
=== Масса ===
Достоверно определить массу звезды можно, только если она является компонентом [[двойная звезда|двойной звезды]]. В этом случае массу можно вычислить, используя обобщённый [[законы Кеплера|третий закон Кеплера]]. Но даже при этом оценка погрешности составляет от 20 % до 60 % и в значительной степени зависит от погрешности определения расстояния до звезды.
Во всех прочих случаях приходится определять массу косвенно, например, из зависимости масса — светимость<ref>[http://www.astronet.ru/db/msg/1188435 Астронет &gt; Массы небесных тел (методы определения)]</ref>.
 
В октябре 2010 года был предложен ещё один способ измерения массы звезды: он базируется на наблюдении за прохождением по диску звезды планеты со спутником. Проанализировав полученные данные и применив законы Кеплера, можно определить массу и плотность звезды и планеты, период вращения планеты и её спутника, их размеры относительно размеров звезды и некоторые другие их характеристики. На настоящий момент (18 октября 2010 г.) метод пока не был использован на практике<ref>{{cite news|url=http://lenta.ru/news/2010/10/18/weight/|title=Придуман новый способ взвешивать звезды|date=18 октября 2010|publisher=Lenta.ru|accessdate=2010-10-18}}</ref>.
 
Наиболее массивной из известных является [[R136a1]], массой в 265 солнечных<ref>{{cite web|url=http://www.bbc.co.uk/news/science-environment-10707416|title=Astronomers detect 'monster star'|date=21 июля 2010|publisher=BBC|lang=en|accessdate=2010-07-22|archiveurl=http://www.webcitation.org/67OTWfItB|archivedate=2012-05-04}}</ref>
 
=== Химический состав ===
Несмотря на то, что доля элементов тяжелее [[гелий|гелия]] в химическом составе звёзд исчисляется не более чем несколькими процентами, они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускоряться, а это отражается как на яркости звезды, так и на цвете и на продолжительности её жизни. Так, чем больше [[металличность]] массивной звезды, тем меньше будет остаток при взрыве сверхновой.
 
Наблюдатель, зная химический состав звезды, может довольно уверенно судить о времени образования звезды.
 
Химический состав звёзд очень сильно зависит от типа звёздного населения и отчасти от массы — у массивных звёзд в недрах полностью отсутствуют элементы тяжелее гелия (в молодом возрасте этих звёзд), жёлтые и красные карлики сравнительно богаты тяжёлыми элементами — они помогают зажечься звёздам при небольшой массе газопылевого облака.{{нет АИ|12|10|2009}}
 
=== Структура ===
[[Файл:Estrellatipos.png|мини|450px|вправо|Расположение лучистой зоны и конвекционной в звездах разной массы]]
 
В общем случае у звезды, находящейся на главной последовательности, можно выделить три внутренние зоны: ядро, конвективную зону и зону лучистого переноса.
 
'''Ядро''' — это центральная область звезды, в которой идут ядерные реакции.
 
'''Конвективная зона''' — зона, в которой перенос энергии происходит за счёт конвекции. Для звёзд с массой <0.5 M<sub>ʘ</sub> это занимает все пространство от поверхности ядра, до поверхности фотосферы. Для звёзд с массой сравнимой с солнечной конвективная часть находится на самом верху, над лучистой зоной. А для массивных звезд она находится внутри, под лучистой зоной .
 
'''Лучистая зона''' — зона, в которой перенос энергии происходит за счёт излучения фотонов. Для массивных звёзд эта зона расположена между ядром и конвективной зоной, у маломассивных она отсутствует, а у звёзд больше массы Солнца находится у поверхности.
 
На более поздних стадиях добавляются дополнительные слои, в которых идут ядерные реакции с элементами, отличными от водорода. И чем больше масса, тем больше таких слоев. У звёзд с массой, на 1 — 2 порядка превышающей М<sub>ʘ</sub> таких слоев может быть 6, где в верхнем, первом слое всё ещё горит водород, а в нижнем идут реакции превращения углерода в более тяжёлые элементы, вплоть до железа. В таком случае в недрах звезды расположено инертное, в плане ядерных реакций, железное ядро.
 
Над поверхностью звезды находится [[Звездная атмосфера|атмосфера]], как правило, состоящая из трех частей: фотосферы, хромосферы и короны.
 
'''Фотосфера''' — самая глубокая часть атмосферы, в её нижних слоях формируется непрерывный спектр.
 
=== Ядерные реакции ===
Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: [[протон-протонный цикл]], характерный для звезд с массой около Солнечной и [[CNO-цикл]], идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.
 
{|-
|
|Протон-протоный цикл
|CNO-цикл
|-
|Основные цепочки
|
* {{math|p}} + {{math|p}} → ²D + {{math|e<sup>+</sup>}} + [[Нейтрино|{{math|ν<sub>e</sub>}}]] + 0,4 [[МэВ]]
* ²D + {{math|p}} → <sup><nowiki>3</nowiki></sup>He + [[Фотон|{{math|γ}}]] + 5,49 МэВ.
* <sup><nowiki>3</nowiki></sup>He + <sup><nowiki>3</nowiki></sup>He → <sup>4</sup>He + 2{{math|p}} + 12,85 МэВ.
|
* <sup>12</sup>C + <sup>1</sup>H → <sup>13</sup>N + ''γ'' +1,95 МэВ
* <sup>13</sup>N → <sup>13</sup>C + ''e<sup>+</sup>'' + ''ν<sub>e</sub>'' +1,37 МэВ
* <sup>13</sup>C + <sup>1</sup>H → <sup>14</sup>N + ''γ''| +7,54 МэВ
* <sup>14</sup>N + <sup>1</sup>H → <sup>15</sup>O + ''γ'' +7,29 МэВ
* <sup>15</sup>O → <sup>15</sup>N + ''e<sup>+</sup>'' + ''ν<sub>e</sub>''+2,76 МэВ
* <sup>15</sup>N + <sup>1</sup>H → <sup>12</sup>C + <sup>4</sup>He+4,96 МэВ
|}
 
=== Перенос излучения ===
{{planned}}
 
=== Процессы гидродинамического равновесия ===
{{planned}}
 
=== Процессы в магнитосфере ===
{{planned}}
 
=== Звездный ветер ===
{{main|Звёздный ветер}}
Звёздный ветер — процесс истечения [[Вещество|вещества]] из звёзд в [[Межзвёздная среда|межзвёздное пространство]].
 
Звёздный ветер может играть важную роль в [[Звёздная эволюция|звёздной эволюции]]: так как в результате этого процесса происходит уменьшение массы звезды, то от его интенсивности зависит срок жизни звезды.
 
Звёздный ветер является способом переноса вещества на значительные расстояния в космосе. Помимо того, что он сам по себе состоит из вещества, истекающего из звёзд, он может воздействовать на окружающее межзвёздное вещество, передавая ему часть своей [[Кинетическая энергия|кинетической энергии]]. Так, форма [[Эмиссионная туманность|эмиссионной туманности]] NGC 7635 [[Туманность Пузырь|«Пузырь»]] образовалась в результате такого воздействия.
 
== Звездная эволюция ==
{{main|Звёздная эволюция}}
Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия [[гравитация|гравитации]] переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов [[Кельвин]]ов, начинаются реакции [[нуклеосинтез]]а, и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на [[главная последовательность|главной последовательности]] [[Диаграмма Герцшпрунга — Рассела|диаграммы Герцшпрунга — Рассела]], пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.
 
В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутренние, наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается — звезда становится [[красный гигант|красным гигантом]]. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.
 
=== Схема эволюции одиночных звёзд ===
<center>
 
{|
|- style="background:#ffffcc"
| width="25%"| <div align="center">малые массы 0.08M<sub>sun</sub><M<sub>*</sub><0.5M<sub>sun</sub></div>
| colspan="2"| <div align="center">умеренные массы<br />0.5M<sub>sun</sub><M<sub>*</sub><8M<sub>sun</sub></div>
| colspan="2"| <div align="center">массивные звёзды <br /> 8M<sub>sun</sub><M<sub>*</sub><60-100M<sub>sun</sub></div>
|- style="background:#ffffcc"
| width="25%"| 
| width="22%"| <div align="center">0.5M<sub>sun</sub><M<sub>*</sub><3M<sub>sun</sub></span>
| width="20%"| <div align="center">3M<sub>sun</sub><M<sub>*</sub><8M<sub>sun</sub></div>
| width="21%"| <div align="center">8M<sub>sun</sub><M<sub>*</sub><10M<sub>sun</sub></div>
| width="12%"| <div align="center">M<sub>*</sub>>10M<sub>sun</sub></div>
|- style="background:#ccffff"
| colspan="5"| <div align="center">горение водорода в ядре</div>
|-
| width="25%" style="background:#333399"| <div align="center" style="color:#ccffff">'''гелиевые белые карлики '''</div>
| width="22%" style="background:#9999ff"|<div align="center">вырожденное He ядро </div>
| style="background:#99ccff" colspan="3"|<div align="center">невырожденное He ядро </div>
|-
| width="25%" style="background:#ffffff" rowspan="6"| 
| width="22%" style="background:#3399ff"|<div align="center" style="color:#000000">гелиевая вспышка</div>
| style="background:#ccffff" colspan="3"| 
|-
| style="background:#ccffff" colspan="4"|<div align="center">спокойное горение гелия в ядре </div>
|-
| style="background:#330099" colspan="2"|<div align="center" style="color:#ccffff">'''C, O<br />белый карлик'''</div>
| width="21%" style="background:#9999ff"|<div align="center">вырожденное CO ядро </div>
| width="12%" style="background:#99ccff"|<div align="center">невырожденное CO ядро </div>
|-
| style="background:#ffffff" colspan="2" rowspan="3"| 
| width="21%" style="background:#3399ff"| <div align="center" style="color:#ccffff">углеродная детонация </div>
| width="12%" style="background:#ccffff" rowspan="2"| <div align="center">горение углерода в ядре. CO в Fe </div>
|-
| width="21%" style="background:#ccffff"|<div align="center">горение углерода в ядре: C в O, Ne, Si, Fe, Ni… </div>
|-
| width="21%" style="background:#330099"|<div align="center" style="color:#ccffff">'''O, Ne, Mg…<br />белый карлик или нейтронная звезда'''</div>
| width="12%" style="background:#333399"|<div align="center" style="color:#ccffff">'''чёрная дыра'''</div>
|}
<small>Схема эволюции одиночных звёзд. По [http://www.astronet.ru/db/msg/1196386 В. А. Батурину и И. В. Мироновой]</small>
</center>
 
=== Образование звезд ===
Наиболее массивные звёзды живут сравнительно недолго — несколько миллионов лет. Факт существования таких звёзд означает, что процессы звёздообразования не завершились миллиарды лет назад, а имеют место и в настоящую эпоху.
 
Звёзды, масса которых многократно превышает массу Солнца, большую часть жизни обладают огромными размерами, высокой светимостью и температурой. Из-за высокой температуры они имеют голубоватый цвет, и поэтому их называют [[Голубой сверхгигант|голубыми сверхгигантами]]. Такие звёзды, нагревая окружающий межзвёздный газ, приводят к образованию газовых туманностей. За свою сравнительно короткую жизнь массивные звёзды не успевают сместиться на значительное расстояние от места своего возникновения, поэтому светлые газовые туманности и голубые сверхгиганты могут рассматриваться в качестве индикаторов тех областей Галактики, где недавно происходило или происходит и сейчас образование звёзд.
 
Молодые звёзды распределены в пространстве неслучайным образом. Существуют обширные области, где они совсем не наблюдаются, и районы, где их сравнительно много. Больше всего голубых сверхгигантов наблюдается в области Млечного Пути, то есть вблизи плоскости Галактики, там, где концентрация газопылевого межзвёздного вещества особенно высока.
 
Но и вблизи плоскости Галактики молодые звёзды распределены неравномерно. Они почти никогда не встречаются поодиночке. Чаще всего эти звёзды образуют рассеянные скопления и более разреженные звёздные группировки больших размеров, названные [[Звёздная ассоциация|звёздными ассоциациями]], которые насчитывают десятки, а иногда и сотни голубых сверхгигантов. Самые молодые из звёздных скоплений и ассоциаций имеют возраст менее 10 млн лет. Почти во всех случаях эти молодые образования наблюдаются в областях повышенной плотности межзвёздного газа. Это указывает на то, что процесс звёздообразования связан с межзвёздным газом.
 
Примером области звёздообразования является гигантский газовый комплекс в созвездии Ориона. Он занимает на небе практически всю площадь этого созвездия и включает в себя большую массу нейтрального и молекулярного газа, пыли и целый ряд светлых газовых туманностей. Образование звёзд в нём продолжается и в настоящее время.
 
=== Жизнь на главной последовательности ===
{{planned}}
 
=== Финальный этап ===
<div style="width: 465px; font-size: 90%; line-height: 14px;">{{ambox
| type = notice
| small = left
| image = [[Файл:Wiki letter w.svg|25px|Заготовка раздела]]
| text = '''Этот раздел [[Википедия:Заготовка статьи|не завершён]].''' <br />Вы поможете проекту, [[Википедия:Правила и указания|исправив и дополнив]] его{{
#if:{{{1|}}}
| <nowiki> </nowiki> следующей информацией: {{{1}}}
}}.
 
}}</div><includeonly>{{категория только в статьях|Википедия:Статьи с незавершёнными разделами}}</includeonly><noinclude>
 
==== Чёрные дыры ====
{{main|Чёрная дыра}}
У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только [[общая теория относительности]]. Такие объекты называют [[Чёрная дыра|чёрными дырами]].
 
==== Нейтронные звёзды ====
{{planned}}
 
== Звёздные каталоги и принципы обозначения звёзд ==
[[Файл:Draco constellation map ru lite.png|290px|thumb|right|Обозначения звёзд на карте [[созвездие|созвездий]] неба северного полушария — [[Дракон (созвездие)|Дракона]] и [[Малая медведица|Малой медведицы]]. Наиболее яркие и известные звёзды имеют собственные имена.]]
В [[Млечный Путь|нашей галактике]] более 200 млрд звёзд<ref name="How Many Stars">[http://www.universetoday.com/guide-to-space/milky-way/how-many-stars-are-in-the-milky-way/ How Many Stars are in the Milky Way?]</ref>. На фотографиях неба, полученных крупными телескопами, видно такое множество звёзд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их. Около 0,01 % всех звёзд Галактики занесено в [[Каталог звёздного неба|каталоги]]. Таким образом, подавляющее большинство звёзд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано.
 
Самые яркие звёзды у каждого народа получили свои имена. Многие из ныне употребляющихся, например, [[Альдебаран]], [[Алголь]], [[Денеб]], [[Ригель (звезда)|Ригель]] и др., имеют [[арабы|арабское]] происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение [[Рим]]а от [[эпоха Возрождения|эпохи Возрождения]].
 
В прекрасно иллюстрированной [[Уранометрия|Уранометрии]] (Uranometria, [[1603]]) немецкого астронома [[Байер, Иоганн|И. Байера]] ([[1572]]—[[1625]]), где изображены [[созвездия]] и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами [[греческий алфавит|греческого алфавита]] приблизительно в порядке убывания их блеска: α — ярчайшая звезда созвездия, β — вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал [[латинский алфавит|латинский]]. Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, [[Сириус]] — ярчайшая звезда в созвездии [[Большой Пёс|Большого Пса]] (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь — вторая по яркости звезда в [[Персей (созвездие)|Персее]] обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введённому им правилу, и в байеровских обозначениях есть большое количество исключений.
 
[[Флемстид, Джон|Джон Флемстид]] ([[1646]]—[[1719]]), первый Королевский астроном [[Англия|Англии]], ввёл систему обозначения звёзд, не связанную с их блеском. В каждом созвездии он обозначил звёзды номерами в порядке увеличения их прямого восхождения, то есть в том порядке, в котором они пересекают [[меридиан]]. Так, [[Арктур]], он же α [[Волопас (созвездие)|Волопаса]] (α Bootes), обозначен как 16 Bootes.
 
Некоторые необычные звёзды иногда называют именами астрономов, впервые описавших их уникальные свойства. Например, [[звезда Барнарда]] названа в честь американского астронома [[Барнард, Эдвард Эмерсон|Э. Барнарда]] ([[1857]]—[[1923]]), а [[звезда Каптейна]] — в честь нидерландского астронома [[Каптейн, Якобус Корнелис|Я. Каптейна]] ([[1851]]—[[1922]]). На современных картах звёздного неба обычно нанесены древние собственные имена ярких звёзд и греческие буквы в системе обозначений Байера (его латинские буквы используют редко); остальные звёзды обозначают согласно Флемстиду. Но не всегда на картах хватает места для этих обозначений, поэтому обозначения остальных звёзд нужно искать в [[Каталог звёздного неба|звёздных каталогах]].
 
Для [[переменная звезда|переменных звёзд]] используется свой способ обозначения. Такие звёзды обозначают в порядке их обнаружения в каждом созвездии. Первую обозначают буквой R, вторую — S, затем T и т. д. После Z идут обозначения RR, RS, RT и т. д. После ZZ идут AA и т. д. (Букву J не используют, чтобы не было путаницы с I.) Когда все эти комбинации истощаются (всего их 334), то продолжают нумерацию цифрами с буквой V (''variable'' — переменный), начиная с V335. Например: S Car, RT Per, V557 Sgr.
 
Также необходимо подчеркнуть, что никаких ''официально'' присвоенных имён у звёзд не существует, лишь по сложившейся ''традиции'', поддерживаемой астрономами, около 300 ярких звёзд имеют [[Традиционные названия звёзд|собственные имена]]. В связи с этим, выдаваемые некоторыми организациями сертификаты о наименовании звёзд являются частной инициативой и не признаются [[Международный астрономический союз|Международным астрономическим союзом]]<ref>[http://www.nkj.ru/archive/articles/3810/ Наука и жизнь. Шесть соток на Луне и собственная звезда. № 1, 2002 год.]</ref><ref name="IAU">[http://www.iau.org/public_press/themes/buying_star_names/ Buying Stars and Star Names — Официальная позиция [[Международный астрономический союз|Международного астрономического союза]] по поводу покупки звёзд и имён звёзд (англ.)]</ref><ref name="IAUrus">[http://www.astroclub.ru/wiki/PrisvoenieImenZvezdam Присвоение имён звёздам — Официальная позиция [[Международный астрономический союз|Международного астрономического союза]] по поводу покупки звёзд и имён звёзд (русский перевод)]</ref>.
-->
 
== Массарелла а бевзуш болу седарчий ==
{| class="standard"
|- style="font-size: 80%"
! №
! Обозначение
! ЦӀе
! [[Созвездие]]
! Гушйолу седарчийн йоккхала
! Расстояние до Земли ([[световой год|св. лет]])
! Описание
|-
|style="text-align: center"| 1
|style="text-align: center"| [[Файл:Sun symbol.svg|25px]]
|style="text-align: center"| [[Солнце]]
|style="text-align: center"| [[Зодиакальные созвездия]]
|style="text-align: center"| −26,72
|style="text-align: center"| 8,32 ± 0,16 св. мин
| Центр [[Солнечная система|Солнечной системы]], в которую входит [[Земля]]
|-
|style="text-align: center"| 2
|style="text-align: center"| α<sup>С</sup> Центавра
|style="text-align: center"| [[Проксима Центавра]]
|style="text-align: center"| [[Центавр (созвездие)|Центавр]]
|style="text-align: center"| +11,09
|style="text-align: center"| 4,225
| Ближайшая к [[Солнце|Солнцу]] звезда
|-
|style="text-align: center"| 3
|style="text-align: center"| α Большого Пса
|style="text-align: center"| [[Сириус]]
|style="text-align: center"| [[Большой Пёс (созвездие)|Большой Пёс]]
|style="text-align: center"| −1,43
|style="text-align: center"| 8,58
| Ярчайшая (после Солнца) звезда из визуально наблюдаемых с Земли
|-
|style="text-align: center"| 4
|style="text-align: center"| α Малой Медведицы
|style="text-align: center"| [[Полярная звезда]]
|style="text-align: center"| [[Малая Медведица (созвездие)|Малая Медведица]]
|style="text-align: center"| +1,97
|style="text-align: center"| 431,4
| Важнейшая навигационная звезда, указывающая направление на север
|-
|style="text-align: center"| 5
|style="text-align: center"| [[Эта Киля|η Киля]]
|style="text-align: center"| —
|style="text-align: center"| [[Киль (созвездие)|Киль]]
|style="text-align: center"| +6,21
|style="text-align: center"| 7000—8000
| Гипергигант. Одна из самых больших и ярких звёзд, примерно в 5 млн раз ярче Солнца.
|-
|style="text-align: center"| 6
|style="text-align: center"| α Скорпиона
|style="text-align: center"| [[Антарес]]
|style="text-align: center"| [[Скорпион (созвездие)|Скорпион]]
|style="text-align: center"| +1,06
|style="text-align: center"| 604
| Одна из самых ярких и крупных звёзд из числа ближайших к Земле. В крупнейшие телескопы видна как диск, а не как точка<ref>''А. Остапенко.'' [http://nauka.relis.ru/35/0210/35210066.htm Снова на берегах «Молочной реки»] // [[Наука и жизнь]]. — 2002. — № 10. ISSN 0028-1263</ref>
|-
|style="text-align: center"| 7
|style="text-align: center"| HIP 87937
|style="text-align: center"| [[Звезда Барнарда]]
|style="text-align: center"| [[Змееносец]]
|style="text-align: center"| +9,53
|style="text-align: center"| 5,963
| Звезда, обладающая наивысшей скоростью [[Собственное движение|собственного движения]]
|-
|style="text-align: center"| 8
|style="text-align: center"| [[PSR B1919+21]]
|style="text-align: center"| —
|style="text-align: center"| [[Лисичка (созвездие)|Лисичка]]
|style="text-align: center"| ?
|style="text-align: center"| 2283,12
| Первый из открытых [[пульсар]]ов ([[1967|1967 год]])
|}
 
== Билгалдахарш ==
МогӀа 70 ⟶ 517 :
 
== Хьажоргаш ==
{{Commons|Stars}}
* [http://ruspostindex.ru/rf59/pochtovye-indeksy-kishertskiy-raion.html Кишертан кӀоштан индексаш]
* [http://www.astronet.ru/db/map/ Карта звёздного неба]
 
* [http://www.u-tube.ru/pages/video/3576/ Наглядная демонстрация размеров звёзд в отношении к планетам Солнечной системы]
{{Perm-kr-geo-stub}}
* [http://lenta.ru/news/2011/07/08/stars/ Сверхновые запылили молодую Вселенную] ''Лента.ру'', 8 июля 2011
 
{{Кишертан кӀошт}}
 
{{1000}}
[[Категори:Кишертан кӀоштан нах беха меттигаш]]
[[Категори:Астрономи]]